منابع مشابه
Memristive devices for computing.
Memristive devices are electrical resistance switches that can retain a state of internal resistance based on the history of applied voltage and current. These devices can store and process information, and offer several key performance characteristics that exceed conventional integrated circuit technology. An important class of memristive devices are two-terminal resistance switches based on i...
متن کاملPattern recognition with TiOx-based memristive devices
We report on the development of TiOx-based memristive devices for bio-inspired neuromorphic systems. In particular, capacitor like structures of Al/AlOx/TiOx/Al with, respectively 20 nm and 50 nm thick TiOx-layers were fabricated and analyzed in terms of their use in neural network circuits. Therefore, an equivalent circuit model is presented which mimics the observed device properties on a qua...
متن کاملSwitching dynamics in titanium dioxide memristive devices
Memristive devices are promising components for nanoelectronics with applications in nonvolatile memory and storage, defect-tolerant circuitry, and neuromorphic computing. Bipolar resistive switches based on metal oxides such as TiO2 have been identified as memristive devices primarily based on the “pinched hysteresis loop” that is observed in their current-voltage i-v characteristics. Here we ...
متن کاملWell-Posed Models of Memristive Devices
Existing compact models for memristive devices (including RRAM and CBRAM) all suffer from issues related to mathematical ill-posedness and/or improper implementation. This limits their value for simulation and design and in some cases, results in qualitatively unphysical predictions. We identify the causes of ill-posedness in these models. We then show how memristive devices in general can be m...
متن کاملHardware neuromorphic learning systems utilizing memristive devices
Hardware Neuromorphic Learning Systems Utilizing Memristive Devices
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanomaterials
سال: 2020
ISSN: 2079-4991
DOI: 10.3390/nano10091677